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Abstract. An interpretation of double coset decompositions of groups is given in terms 
of the construction of systems from similar disjoint subsystems. A natural labelling scheme 
is developed for the direct product states of systems of this type, providing an extension 
of the concept of unique labelling. An application of the decoupling transformation to 
finite direct sum systems is investigated. 

1. Introduction 

Many group-theoretical techniques have been developed specifically for the solution 
of group-theoretical problems, such as the determination of complete sets of irreducible 
representations. In particular the theory of induced representations has been 
developed mainly with an eye to finding the irreducible representations of symmetric 
groups and space (i.e. crystal lattice groups). The motivation of the present work is 
rather different. We are interested in the role of group-theoretical description in 
facilitating the solution of dynamical problems. Hence the emphasis will be on the 
interpretation of mathematical definitions and theorems in physicai terms: relevant 
mathematical proofs can be found in the literature. 

We shall focus attention specifically on the symmetry properties of systems which 
can, at least partially, be decomposed into direct sums of similar disjoint subsystems. 
To be precise we suppose that the state vectors 16) which describe the system can be 
decomposed as a direct sum of state vectors: 

In this equation the lei“) for a given value of j are supposed to correspond to similar 
disjoint subsystems. That is to say, they can be interchanged by symmetry operations 
of the total system (and necessarily have the same dimensions). In the interests of 
clarity we shall interpret mathematical results in relation to systems with only one 
value of j ,  thus retaining just the summation over i in equation (1.1). Some con- 
sequences of including more than one j value will be mentioned in the final discussion. 

In the context of direct sum systems we shall find it useful to introduce the 
mathematical ideas of double cosets and induced representations. These ideas provide 
the background to the powerful ‘reciprocity theorem’ due to Frobenius (1903; see 
also Ledermann 1977) as well as a series of theorems due to Mackey (1951, 1952, 
1953) which have been discussed by Coleman (1968), Ledermann (1977) and Altmann 
(1977). In this part of the work we shall concentrate on the problem of assigning 
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2376 D J Newman 

unique group-theoretical labels to states of the system, taking the view (following 
Newman 1981) that this is the fundamental group-theoretical problem in physics, as 
it  provides the best possible starting point from which to determine solutions of the 
dynamical problem. 

In particular, we shall extend our previous work on unique labelling to provide a 
method of labelling the direct product bases of groups which are not simply reducible. 
This method is exemplified using representations of the 384-element ’cyclic region’ 
group studied by Chan and Newman (1982). Koptsik and Evarestov (1980, table 1) 
have listed twelve groups of this type defined in cubic lattices, which they refer to as 
’extended unit cell groups’. They also mention some possible areas of application. 

Another development of the theory relates to situations where the subsystems can 
be further subdivided into components. Such subdivisions can sometimes be carried 
out so that either the subsystems are only weakly interacting or the components (within 
a subsystem) are weakly interacting. Systems of both types have a much simplified 
dynamical problem. In the latter case this can be solved by a procedure which (in 
particular context) has been called the ‘decoupling transformation’ (Newman 1974a,b). 
We shall show that this procedure has a wider range of application than has previously 
been described. 

2. Examples of direct sum systems and their group-theoretical description 

The symmetry group H of a subsystem is necessarily a subgroup of the group G of 
operations which leave the complete system invariant. It is also a subgroup of the 
local group L of an isolated subsystem. The group L becomes important if the 
subsystems are so weakly interacting that they can be regarded as completely decoupled 
systems to a good approximation. In this situation the Hamiltonian matrix reduces 
to a direct sum of intra-subsystem submatrices. Examples of this are the ‘superposition 
model’ of crystal fields (Newman 1971) and the ‘independent bonding’ model used 
in chemistry. We shall not go into the detailed aspects of this theory, but merely note 
that the value of the model derives from the fact that L corresponds to a higher 
symmetry than H. 

The symmetry group of the system will generally be denoted G and the subsystem 
groups will be denoted HI. The assumption that all subsystems are similar corresponds 
to the isomorphism of the different H,. More precisely, the HI are necessarily conjugate 
subgroups of G :  given any pair of subgroups HI, H, we have 

HI = gH,g-’ 

for some element g E G. The H, are not necessarily distinct for the different subsystems; 
they cannot be used, in general, to label subsystems. 

The precise relationship between subsystems and group operations is best construc- 
ted from the ‘viewpoint’ of a particular subsystem. That is to say, we shall study the 
process of generating the basis vectors of the complete system /i, a), where i labels 
the subsystem and a labels the component within the subsystem basis, from the basis 
11, a) of a ‘home’ subsystem. In describing subsystem bases as a whole it will often 
be convenient to drop the component label a. Writing the home subgroup H 1  we 
note that its operators map the home basis into itself: 

Hill)+ 11). 
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Any operator g ,  E G, g ,  &HI will map a home basis vector onto the basis vector of 
another subsystem. If we span the complete left coset g,H1 the mapping is between 
subsystem bases: 

g,H111)+ li). 

As the left cosets of H I  in G are disjoint it follows that they are in 1-1 correspondence 
with the subsystems and thus provide them with unique labels. It also follows that 
there are just lGl/lHl\ distinct subsystems, where IG/ is used to represent the number 
of elements in G. 

Given that g,H1 generates the basis of the subsystem corresponding to this left 
coset, we see that double cosets Hlg,H1 span the subsystem bases which transform 
into each other under operations in HI. We can, therefore, classify all subsystems in 
terms of their relationship with the home subsystem. All similarly related subsystems 
will be included in a basis Hlg,HIIl) generated by the double coset operators acting 
on 11). This classification of subsystems is clearly important in relation to the analysis 
of matrix elements and the description of many-electron states. 

It will be apparent from the above argument that double cosets either contain no 
element in common or are identical. They therefore provide a classification of all the 
operators in G. A simple formula exists which gives the numbers of operators in each 
double coset. This is 

diIHigiHiI = IHiIz/IAiI (2.1) 
where hi is the intersection group H I  n H, = H I  n g;'Hlg,. Another way of expressing 
this result, which follows immediately from the discussion of the physical interpretation 
of double cosets given above, is lH1\t where t is the number of distinct types of 
subsystem as classified by their relation to the home system. In specific problems t 
can usually be obtained by inspection. 

From a mathematical point of view, double cosets of the form HgH are a special 
case of the double cosets HgM where H and M may be different subgroups of G. 
Such double cosets are relevant if we are studying the relationships between two sets 
of subsystems, each set having its own distinct symmetry group. This problem has 
been eliminated from our discussion by the initial assumption that only one set of 
similar subsystems would be studied. 

As a first example we consider the system shown in figure 1. The total symmetry 
of the system shown is D4h if we assume that the (unspecified) internal structure of 

c; C Z  

Figure 1. Ddh constructed from four equivalent subsystems A, B, C, D. Examples of C2 
and C; axes are shown; (J, and a: planes are perpendicular to these. 
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the subsystems does not reduce the symmetry of the total system. The subsystems 
have C;, symmetry where the C; axis is directed towards the centre of the system. 
All subsystem subgroups have the operator (Th in common and pairs of diagonally 
opposed subsystems have the same symmetry group C;,. 

The two subsystems at corners of the square which are closest neighbours to the 
home system can be transformed into each other. The intersection group between 
Czv groups on neighbouring corners is (E ,ah ) .  All operators which map the home 
C;, operators into operators with C;, groups at the two neighbouring corners make 
up a double coset with 8 (= 42/2) elements. Hence, there are just three double cosets 
in all. 

(i) The ‘home’ (e.g. B) subsystem group C;, = C;,EC;,. 
(ii) Double cosets relating neighbouring subsystems (e.g. B to C) C;,C4C;,. 
(iii) The double coset relating opposite subsystems (e.g. B to D) C;,CiC;,. 
A second example is provided by the various methods of inducing o h  representa- 

tions discussed in Newman (1981). If C3v subsystems are used, so that the subsystems 
are located at each of the eight corners of a cube, there are four double cosets 
corresponding to an (000), (aOO), (aaO) and ( a m )  relation between the subsystems 
(a  being the length of a side of the cube). These double cosets have, respectively, 6 ,  
18, 18 and 6 elements, so that together they comprise the 48 elements in o h .  

The work of Newman (1981) and Chen and Newman (1982) makes it clear that 
there are advantages in choosing subsystems which correspond to Abelian subgroups. 
An obvious choice for o h  is which has two C2 axes of type C; in o h .  In this 
case there are six subsystems as shown in figure 2 (corresponding to the six cosets of 
Dih  in o h ) .  There are, however, only three distinct Dih  subgroups of oh, and these 
have no elements other than the identity and inversion in common. Equation (2.1) 
gives the dimensions of the double cosets as 8, 8 and 32, the latter number indicating 
that four subsystems bear an equivalent relation to the home subsystem A. In figure 
2 these are labelled B, C, D and E. 

A 

Figure 2. Oh system constructed from six equivalent non-localised subsystems A, B, C, 
D, E, F. The two parts of the ‘home’ subsystem A are shown linked. 

A third example, which we shall pursue in § 4, is provided by the so-called ‘cyclic 
region group’ O;/(~FCC) that has been studied by Chan and Newman (1982). It was 
remarked in that paper that the chain of groups 

Dih C Oh C O:/(ZFCC) 

provides a unique labelling of the irreducible representations in a 384-dimensional 
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regular representation of O~/(ZFCC). This is demonstrated explicitly by the correlation 
tables (tables 1 and 2 below) which relate the irreducible representations in the chain, 
remembering that D;h is Abelian. 

There are three double cosets for o h  c O?/(ZFCC), corresponding to the relation 
between an Oh subsystem and itself and the relation between an o h  subsystem and 
other systems displaced by t and r’ (these translations being defined in Chan and 
Newman (1982, table 5 ) ) .  The intersection groups corresponding to these double 
cosets are 

o h ,  o h  n (f’-lOht’), o h  n ( t - ’ o h f )  =D;h. 

As we have indicated above, irreducible representations of both Dih and O h  provide 
for a unique labelling of O:/(ZFCC) representations. 

Table 1. Irreducible representations in the 192-element group GP containing the proper 
operations in Oil(2FCC) corresponding to representations induced by 0. 

Tit  @Ti t  AI? A2t Et  Tit Tzt 

AP 5 
A; 2 
Er  7 
TT 8 
T: 9 
A: 12 
A: 8 
B: 9 
B: 9 

A4 10 

EX 17 
A: 14 

EL 24 

DIMS 576 

1 
1 

1 
1 

1 
1 1 

1 1 
1 

1 
1 1 

1 1 
1 1 

1 1 1 

8 8 16 24 24 

Table 2. Irreducible representations of 0 corresponding to the representations induced 
in 0 by Di .  

A1 1 
A2 1 
E 1 1 
TI 1 1 1 
T2 1 1 1 

DJMS 6 6 6 6 

3. Induced representations and Frobenius’s reciprocity theorem 

Frobenius (1903; Ledermann 1977, Altmann 1977) has given a general procedure for 
generating representations of the group G which are ‘induced’ by irreducible rep- 
resentations of an arbitrary subgroup H c G .  We shall follow the exposition of 
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Ledermann (1977, p 69), omitting proofs but making some comments about the 
physical interpretation of the mathematics. We have already shown that the decompo- 
sition of G into r = /GI/IHI left cosets has a direct significance in relation to the 
decomposition of a system into similar subsystems. We write 

where the set of r operators g, E G includes the identity. 
Let R ( x )  (x E H )  be an irreducible representation of H generated by an n- 

dimensional subsystem basis with the convention that R ( x )  = 0 if x E G, x & H ,  The 
( r  x n)-dimensional representation induced by H in G is defined as 

where the matrix S contains r 2  submatrices R. These submatrices are zero if g;’ x 
giaH, and it can be shown that only one submatrix survives in any row or column. 
Hence S permutes complete subsystem bases but does not mix their components. 

A simple formula can be derived which relates the characters of the representations 
xH of H to the characters xG of their induced representations in G. If h ( x )  and g(x) 
denote the numbers of elements in the classes containing x in H and G, respectively, 
we may write 

where the sum is taken over all classes in H that correspond to a specific class in G 
and r = IG/ / /H /  is the same quantity as was introduced above. A trivial consequence 
of this formula is that the regular representation of H induces the regular representa- 
tion of G. 

Frobenius also proved the ‘reciprocity theorem’, which states that the number of 
times an irreducible representation r, of G appears in the representation r ( y p )  induced 
by the irreducible representation yp of H is equal to the number of times yp appears 
in a reduction of r, with respect toff. This theorem has also been called the ‘correlation 
theorem’ by Wilson et a1 (1955) and Newman (1981). Its value is that it provides a 
means of using subgroups to provide as unique symmetry labelling of the states of a 
system rather than the more familiar method of using higher (essentially fictitious) 
symmetry groups. An example of this application can be found in Newman (1981) 
where it is employed to obtain a unique group-theoretical labelling of the displacements 
in shells of atoms in cubic crystals. The idea, which can be carried over to the general 
context of the present discussion, is to use subgroup irreducible representation labels 
to distinguish repeated occurrences of a given irreducible representation of G in the 
state space of the complete system. The circumstances in which this may be carried 
out are a trivial consequence of the reciprocity theorem. 

If the reduction of the irreducible representations of G with respect to H c G is 
unique (in the sense that no H representation is repeated in a given reduction), then 
uniquely labelled bases corresponding to the states of a subsystem of symmetry H 
may be used to provide unique labels for the induced bases of direct sum system of 
symmetry G. It should be noted that this result depends on the fact that the maximal 
basis under consideration corresponds to a regular representation of G. 
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The work of Newman (1981) shows explicitly how such a labelling is achieved for 
several possible subsystems of an Oh system. In particular, it is shown that C ; ,  
subsystems provide a unique labelling of the o h  normal nodes of vibration. This 
example points to the value of using subsystems whose symmetry properties can be 
described by an Abelian subgroup of the system group. 

4. Direct products of induced representations 

Ledermann (1977) and Altmann (1977) both discuss an interesting series of theorems 
due to Mackey (1951, 1952, 1953), which relate to the irreducible representations 
which appear in inner direct products of induced representations. The idea behind 
these theorems is to analyse the direct products into a sum of representations corres- 
ponding to the various possible relationships between subsystems. Remembering, 
from 0 2, that the relationships between subsystems (and their corresponding sub- 
groups) have structures related to the double coset analysis of the group, it comes as 
no great surprise to find that Mackey’s final theorem expresses the inner direct product 
in terms of a sum over contributions labelled by double cosets. We shall again restrict 
consideration to double cosets generated by a single subgroup, so that the form of 
Mackey’s theorem given below is a special case. 

Let xh, xb denote the characters of two representations of the subgroup H, of G. 
We shall write (xt f G), f G j  for the characters of the corresponding representa- 
tions induced in G. Following 0 2 we write A, = H I  n HI. It can be shown (Ledermann 
1977, page 8 6 )  that the products 

i, (x = xb (x 1x; (x 1 (x E 4) (4.1) 

are characters of A,, and that the induced characters satisfy the relation 

for all operators in G. Altmann (1977, p 155) formulates this theorem more explicitly 
in terms of inner direct products of the induced representations. He also extends it  
(p 157) to the triple inner direct product of induced representations. 

It is apparent that equation (4.2) analyses the product representation into com- 
ponents corresponding to each possible relationship between subsystems (enumerated 
by i). Provided that (ll t G )  gives a unique labelling of the representations of G, we 
see that the addition of the subsystem relationship label i should provide for a unique 
labelling of the direct product representations of G. 

As a specific example of a labelling problem that can be solved by using Mackey’s 
theorem we consider the representation produced by the direct product of OhTlg 
representations induced into G = O;/ (~FCC) .  This may be reduced with respect to G 
(forming an inner direct product) to give the following 242 = 576-dimensional rep- 
resentation: 

+17EF+ 14A:,+ 10Akg+24E;. (4.3) 

This equation may be obtained from table 1, or directly from the character table given 
by Chan and Newman (1982, table 5 ) .  In order to simplify the following discussion 
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we shall drop the labels g which indicate inversion symmetry and seek to analyse the 
above expression in terms of the chain 

DjL c 0 c Gp 

where Gp is the 192-element group corresponding to the proper rotations and (two-fold 
cyclic) translations in G. Tables 1 and 2 give the correlations between irreducible 
representations for this chain, and show that it provides a unique labelling scheme in 
the sense of Newman (1981). 

We are interested in possible ways of providing group-theoretical labels to distin- 
guish repeated representations on the right-hand side of (4.3). One approach would 
be to expand Ti? in terms of Gp representations (see table 1): 

TIT = T r +  A; + EX t A i + E L .  

This allows us to analyse the right-hand side of (4.3) in terms of Gp representations 
but, as this group is not simply reducible (see Chan and Newman 1982, table 5 )  a 
unique labelling is not, thereby, obtained. However, the double coset decomposition 
does provide a way of obtaining a unique labelling scheme. 

According to Mackey’s theorem (equation (4.2)) the product representation 
TIT O TIT can be expressed as a sum over induced representations of direct product 
representations of the subsystem intersection groups DjL and 0 (corresponding to the 
Ai in equation (4.1)). In the case of the intersection group 0, the term on the right-hand 
side of (4.2) contributing to (4.3) is 

Here the second equality follows from table 1. The inducing representation label of 
the group 0 is retained (Newman 1981) to distinguish between repeated representa- 
tions, such as the three occurrences of EL. 

Two 72-dimensional representations (T1 0 Tl)? occur, corresponding to the self- 
interaction of the subsystem (with double coset containing the elements of the group 
0) and the interaction of subsystems displaced by t’. Hence the labels E, t’ must also 
be retained in order to distinguish these two sets of similar representations. The 
remaining part of expression (4.3) is produced by the representations induced in GP 
by the representation of the interactions group D; using the correlations given in 
table 2. We obtain 

Here the direct product origin of each representation has to be retained for unique 
labelling. The subscripts e, o distinguish the even and odd part of direct products of 
distinct representations. Taking the first representation as an example, we find using 
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table 2 that it induces the following representation into 0: 

(Bi 0 Bi)AiT = (Bi 0 Bi)AiIAi + (Bi 0 Bi)AiJE+(Bi  0 Bi)AiIT* 

= B:/A~ + B:/E + B:JT~. 

In the last line we have removed redundant symbols, retaining only the B: which 
distinguishes this A1 representation of Di from the other two. The next step is the 
further induction of this representation into Gp, giving 

( B i @ B i ) A i ? ? = B  ; I A~ I A: + B : I A ~ I A ~  + B:IA~IA: + B:JE/E~ + B : I E I A ~  + B:IEIRT 
+ B:/EIEL + B:/T2/Ti + B:ITz/B? + B:lT2]EX + B:lT2]A: + B:lT2/EL, 

In this case it is necessary to retain both a D; and 0 label to ensure unique labelling 
of the Gp representations. 

It will be apparent that the remaining eight expressions in equation (4.5) can be 
treated similarly, leading to unique group-theoretical labels for all the components in 
the expansion of [(B1 + Bz + B3) 0 (B1 + BZ +B3)]TT. This 9 x 6 x 8 = 432-dimensional 
representation, which should be distinguished by the label t corresponding to the 
translation between subsystems defined by Chan and Newman (1982, 0 4), completes 
the expansion of TIT 0 Ti? as required. Hence, every term in equation (4.3) can be 
provided with a unique label using Mackey's theorem (equation (4.2)). In general, 
we note that this depends on finding a chain of subgroups corresponding to the h,, 
equation (4.1), which ( a )  provides a unique labelling scheme and ( b )  in which all the 
subgroups are simply reducible. 

The procedure exemplified in this section is thus seen to provide an important 
extension to the concept of unique labelling. It allows the use of groups in unique 
labelling schemes which are not themselves simply reducible, provided that a suitable 
chain of simply reducible subgroups (covering the Ai) exists. 

5. Subsystems with non-interacting components 

The relationship between Wannier and Bloch functions has been formulated in 
group-theoretical terms by des Cloizeaux (1963), who expioited the fact that the 
Wannier functions induce representations of the space group. This procedure follows 
the standard method of describing space group irreducible representations (Altmann 
1977 and references therein). des Cloizeaux (1963) also studied the relationship 
between molecular orbitals and localised states in small lattice systems, such as a 
tetrahedron of lattice points. 

More recently Newman (1974a) has discussed the relationship between Bloch 
states on a lattice of symmetry G and Bloch states on a set of equivalent sublatticest 
of symmetry H c G. If an infinite lattice is considered, H and G can be chosen to 
be isomorphic, yet the subgroup relationship is preserved because all the translation 
operators in H are fixed integral multiples of those in G. The physical idea exploited 
in this formalism is that, provided the sublattice is sufficiently sparse, its Bloch states 
lose their dispersion in k space, the highly degenerate energy level being equivalent 
to that of a Wannier function defined on the original lattice. As a result, it is possible 

f There is some confusion in the literature regarding the usage of the terms 'sublattice' and 'superlattice'. 
In  this work a subhrtice is invariant under the operations in a subgroup of the original lattice group. 
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to use band energies at relatively few points in the Brillouin zone to determine the 
energies and interaction energies of the Wannier functions. If the band energies are 
known for a sufficient number of k values, it is relatively easy to determine the 
accuracy of this procedure, which has been called the decoupling transformation. 

A similar formalism relates phonon dispersion curves with localised atomic dis- 
placements (Newman 1974b). The difference in this case is that the dispersion curves 
have normally been determined experimentally. 

In order to demonstrate the application of the decoupling transformation to finite 
systems, as well as infinite lattices, we shall employ a very simple example which is 
capable of interpretation in both ways. Figure 3 shows a system comprising four 
subsystems, numbered 1 to 4.  Each subsystem comprises two (atomic) components 
labelled a, b, which we assume to be far enough apart to be non-interacting. For the 
purposes of discussion we associate each component with a single s state, so that the 
one-electron states of the complete system are described by an eight-element vector. 
Alternatively, we can regard figure 3 as being embedded in a simple cubic lattice, so 
that the state vectors have infinite dimensionality. 

Figure 3. Oh system constructed from four equivalent non-localised subsystems numbered 
from 1 to 4. 

If Eo represents the energy of an isolated s state and E l  is the interaction energy 
between nearest-neighbouring s states, the total energy matrix may be written as 
follows: 

l a  l b  2a 26 3a 3b 4a 46 
l a  Eo E1 E1 El 
l b  Eo El E1 E1 
2a Ei Eo E1 El 
2b E1 Eo E1 E1 ( 5 . 1 )  
3a E1 Ei Eo E1 
3b E1 E1 Eo E I  
4a E1 E1 E1 Eo 
4b El E1 E1 EO. 

As the s states are invariant under inversion this operation can be omitted from our 
group-theoretical description. It is, therefore, sufficient to regard the complete system 
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as being invariant under the octahedral group 0, and the subsystems 1 to 4 as being 
invariant under D3 c 0. 

A partial diagonalisation of the matrix (5 .1)  can be achieved using the subsystem 
symmetry D3. The pairs of s states for each subsystem may be combined to form a 
symmetric combination corresponding to the A1 representation of D3, or an antisym- 
metric combination corresponding to A2. With this basis (5.1) becomes 

Ai AZ 
1 2 3 4 1  2 3 4  

1 Eo E1 EI E1 

2 
A2 3 

4 -El -E1 -E1 Eo 

The induced representations in 0 corresponding to A1 and A2 are given by 

AI? = A1 + Tz AzT = A2 +Ti. 

The matrix (5.2) can be trivially diagonalised to give eigenvalues corresponding to 
each irreducible representation of 0: 

The difference of sign of El in each pair of solutions is clearly associated with the 
relative phases of the component s states in the subsystems. In the case when the 
system of figure 3 is a simple cubic lattice (still with four subsystems) embedded in a 
simple cubic lattice, each of the four solutions can be associated with a different point 
in the corresponding Brillouin zone. Referring to table 1 of Newman (1974) for both 
energy expressions and notation we find the correspondence: 

Tz: M; k = (110), etc 

Az: R; k =(ill). 

A ~ :  r ; k = (000) 

T1: X;  k = (loo), etc (5.4) 

Alternatively, we may embed the subsystems into a face-centred cubic system. Table 
4 of Newman (1974) then allows us to set up a correspondence with a single pair of 
solutions 

( 5 . 5 )  A ~ :  r; k = (000) T2: X; k = (200), etc. 

It is also necessary to note that in this case the interaction energy I ( g 0 )  =;El, 
The form of the solutions (5 .3)  makes it clear that there is a simple relationship 

between two sets corresponding to different D3 irreducible representations. The 
transformation AI + A2 is effected by a change in the relative sign of the component 
wavefunctions which, in turn, produces a change in sign of the interaction energy El. 
Hence, having obtained the solutions for one of the irreducible representations of 
the subgroup we can generate all the others simply by noting the effect on interaction 
energies. In the case of infinite lattice systems this enables us to obtain an expression 
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for the band energy at arbitrary points in k space. From this point of view all four 
solutions in (5.3) and (5.4) are given by the formula 

E ( & )  =Eo+E1(cos 7rkl +cos TkZ+COS 7rk3) (5.6) 

which also interpolates the solutions at other points in k space. 
In general, therefore, the method is to solve the problem in terms of interactions 

between subsystems and then to generalise the solutions to allow for possible phase 
differences between subsystem components. Finite systems will allow only a finite set 
of phase relations, whereas infinite lattices give rise to a continuum of solutions within 
the Brillouin zone. 

6. Discussion 

We have developed the physical interpretation of several mathematical results concern- 
ing the properties of induced representations. The emphasis has been on finding 
unique group-theoretical labels to describe the states of complex systems, on the basis 
that such descriptions provide an essential first step in the solution of dynamical 
problems. 

A search of the literature has revealed several other different (and hitherto 
independent) strands of development related to the properties of induced representa- 
tions. The work of Lulek (1980), Kuzma et a1 (1980) and Litvin (1982) has been 
centred on the analysis of physically determined representations into irreducible 
components. The methods used by Litvin (1982) are exactly analogous to those 
described by Newman (1981) and Chan and Newman (1982), although Litvin gives 
less explicit consideration of the problem of unique labelling. 

There has also recently been considerable interest in the application of these 
techniques in the description of molecular symmetry, particular!y in the case of 
non-rigid molecules, where a natural analysis into internally rigid subsystems may be 
useful. Work of this nature is described by Frame (1979). 

Seligman (1979) discusses the application of double coset theory in the evaluation 
of matrix elements. This implicitly involves Mackey's theorem (see Q 4) as the system 
matrix elements are decomposed into a sum involving the various possible inter- and 
intra-subsystem matrix elements. 
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